
Time Dilation 

 Light moves at speed 𝑐 in all frames 

 Two events that occur simultaneously in one 

reference frame may not be simultaneous in 

another frame 

 Two events that occur at the same location 

in frame 𝐴, separated by a time 𝑡𝐴, will take 

a greater time 𝑡𝐵 = 𝛾 𝑡𝐴 in frame 𝐵 moving 

at velocity 𝑣 with respect to frame 𝐴 

 𝛾 =
1

√1−
𝑣2

𝑐2

 (with 𝛾 ≥ 1) 

Head Start Effect 

 Two clocks are positioned at the end of a train of length 𝐿 (as 

measured in its own frame. The clocks are synchronized in the 

train’s reference frame 

 The train travels past an observer at speed 𝑣. The observer will 

see the rear clock showing a higher reading than the front clock 

by Δ𝑡 =
𝐿𝑣

𝑐2
 

 The rear clock does not tick faster than the front clock, it simply 

remains a fixed time ahead of the front clock 

 

Length Contraction 

 An object in frame 𝐴 moves with velocity 𝑣 relative to frame 𝐵. 

The object has length 𝑙′ along this direction of motion in 𝐴’s 

frame. The object has a shorter length 𝑙 =
𝑙′

𝛾
 in 𝐵’s frame 

 Length contraction does not apply in the directions transverse to 

the direction of motion (set by 𝑣) between two reference frames  

 

Example 

A muon moves from a height ℎ straight down towards the Earth 

with a large velocity 𝑣. It decays after time 𝑇 in its own frame. 

Can the muon reach the ground? 

 In the Earth’s frame, time dilation applies. The muon 

has to travel a distance ℎ in time 𝛾 𝑇 

 In the muon’s frame, length contraction kicks in. The 

muon must travel a distance 
ℎ

𝛾
 in time 𝑇 

  

 

 

 

 

 



Lorentz Transformation  

 Frame 𝑆′ moves at velocity 𝑣 relative to frame 𝑆 

 The length and time between two events (an event is anything that 

has space and time coordinates) in 𝑆′ are related to those in 𝑆 by 

 

 

 Since there is no transverse length contraction, Δ𝑦 = Δ𝑦′ and Δ𝑧 = Δ𝑧′ 

 Δ𝑥2 − 𝑐2Δ𝑡2 has the same value in all reference frames 

 

 

Velocity Addition 

 An object moves at speed 𝑣1 with respect to frame 𝑆′. Frame 𝑆′ moves 

at speed 𝑣2 with respect to frame 𝑆 in the same direction of motion as 

the object. The speed 𝑢 of the object in frame 𝑆 is 

𝑢 =
𝑣1 + 𝑣2

1 +
𝑣1𝑣2
𝑐2

 

 An object moving at speed 𝑐 in one reference frame moves at speed 𝑐 
in all reference frames 

 An object moving slower than 𝑐 in one reference frame moves slower 

than 𝑐 in all reference frames 

 

 

Momentum and Energy 

 The relativistic energy and momentum of a particle moving with velocity �⃗� are given by 

  

 

 

 A particle moves at speed 𝑢′ in frame 𝑆′, which moves at speed 𝑣 

relative to frame 𝑆. Momentum (𝛾𝑢′𝑚𝑢′) and energy (𝛾𝑢′𝑚𝑐
2) in 𝑆′ is 

related to that in 𝑆 by the same Lorentz transformation as space and 

time (with 𝛾 ≡ 𝛾𝑣) 

 

 

 Energy and momentum are conserved in collisions within the same reference frame 

 The invariant mass formula 𝐸2 − 𝑝2𝑐2 = 𝑚2𝑐4 applies any mass in any reference frame 

  

Slow speeds 

(𝑣 ≪ 𝑐) 

𝑝 ≈ 𝑚�⃗�  

𝐸 ≈ 𝑚𝑐2 +
1

2
𝑚 𝑣2 

 

 

 

 

 

Δ𝑥 = 𝛾(Δ𝑥′ + 𝑣 Δ𝑡′) 

Δ𝑡 = 𝛾 (Δ𝑡′ +
𝑣

𝑐2
 Δ𝑥′) 

Δ𝑥′ = 𝛾(Δ𝑥 − 𝑣 Δ𝑡) 

Δ𝑡′ = 𝛾 (Δ𝑡 −
𝑣

𝑐2
 Δ𝑥) 

𝐸 = 𝛾(𝐸′ + 𝑣 𝑝′) 

𝑝 = 𝛾 (𝑝′ +
𝑣

𝑐2
𝐸′) 

 

𝐸′ = 𝛾(𝐸 − 𝑣 𝑝) 

𝑝′ = 𝛾 (𝑝 −
𝑣

𝑐2
𝐸) 

 

𝑝 = 𝛾𝑚�⃗�  

𝐸 = 𝛾𝑚𝑐2 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

Cartesian Coordinates 

 

 

 

Polar Coordinates 

 

Cylindrical Coordinates 

 

 

 

Spherical Coordinates 

 

 

 

𝑥 = 𝑟 Sin[𝜃] Cos[𝜙] 

𝑦 = 𝑟 Sin[𝜃] Sin[𝜙] 

𝑧 = 𝑟 Cos[𝜃] 

𝑟 = √𝑥2 + 𝑦2 + 𝑧2 

𝜃 = ArcTan [ 
(𝑥2 + 𝑦2)1/2

𝑧
 ] 

𝜙 = ArcTan [ 
𝑦

𝑥
 ] 

Volume Element 

𝑑𝑉 = 𝑟2  Sin[𝜃] 𝑑𝑟 𝑑𝜃  𝑑𝜙 

𝑥 = 𝜌 Cos[𝜃] 

𝑦 = 𝜌 Sin[𝜃] 

𝑧 = 𝑧 

𝜌 = √𝑥2 + 𝑦2 

𝜃 = ArcTan [ 
𝑦

𝑥
 ] 

𝑧 = 𝑧 

Volume Element 

𝑑𝑉 = 𝑟2  Sin[𝜃] 𝑑𝑟 𝑑𝜃  𝑑𝜙 

Area Element 

𝑑𝑉 = 𝑟 𝑑𝑟 𝑑𝜃 

𝑥 = 𝑟 Cos[𝜃] 

𝑦 = 𝑟 Sin[𝜃] 

𝑟 = √𝑥2 + 𝑦2 

𝜃 = ArcTan [ 
𝑦

𝑥
 ] 

Polar 

to 

Cartesian 

Cartesian 

to 

Polar 

 

Unit Vectors 

�̂� = Cos[𝜃] �̂� + Sin[𝜃] �̂� 

𝜃 = −Sin[𝜃] �̂� + Cos[𝜃] �̂� 

𝑥 = Cos[𝜃] �̂� − Sin[𝜃] 𝜃 

�̂� = Sin[𝜃] �̂� + Cos[𝜃] �̂� 

Area Element 

𝑑𝑉 = 𝑑𝑥  𝑑𝑦 

An oldie but a goodie, yet not always the best choice! 

Area of a circle in Cartesian coordinates 

∫ ∫ 𝑑𝑥 𝑑𝑦
√𝑅2−𝑦2

−√𝑅2−𝑦2

𝑅

−𝑅

𝑝𝑎𝑖𝑛
⇒  𝜋𝑅2 

 Area of a circle in Polar coordinates 

∫ ∫ 𝑟 𝑑𝑟 𝑑𝜃
𝑅

0

2𝜋

0

𝑒𝑎𝑠𝑦
⇒  𝜋𝑅2 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Law of Cosines 

 

 

 

 
 

 

 

 

 

Trig Functions 

 

 

 

 

 

 

 

 

  

 
 

Dot Product 

𝐴 ∙ 𝐵ሬ⃗ = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧 

= ห𝐴หห𝐵ሬ⃗ หCos[𝜃] 

Cross Product 

𝐴 × 𝐵ሬ⃗ = ൫𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦൯𝑥 

+   + (𝐴𝑧𝐵𝑥 − 𝐴𝑥𝐵𝑧)�̂� 

+      + ൫𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥൯�̂�  

 𝐴 × 𝐵ሬ⃗  is a vector 

 𝐴 × 𝐵ሬ⃗ = −𝐵ሬ⃗ × 𝐴               𝐴 × 𝐴 = 0ሬ⃗  

 Direction given by right-hand rule and magnitude 

ห𝐴 × 𝐵ሬ⃗ ห = ห𝐴หห𝐵ሬ⃗ หSin[𝜃] equal to parallelogram area 

 𝐴 ∙ 𝐵ሬ⃗  is a scalar 

 𝐴 ∙ 𝐵ሬ⃗ = 𝐵ሬ⃗ ∙ 𝐴                 𝐴 ∙ 𝐴 = ห𝐴ห
2
 

 For any unit vector �̂�, 𝐴 ∙ �̂� represents the length 

of 𝐴 along the direction �̂� 

 

Cos[0] = 1 

Cos [
𝜋

6
] =

ξ3

2
 

Cos [
𝜋

4
] =

ξ2

2
 

Cos [
𝜋

3
] =

1

2
 

Cos [
𝜋

2
] = 0 

Cos[𝜋 − 𝑥] = −Cos[𝑥] 

Sin[0] = 0 

Sin [
𝜋

6
] =

1

2
 

Sin [
𝜋

4
] =

ξ2

2
 

Sin [
𝜋

3
] =

ξ3

2
 

Sin [
𝜋

2
] = 1 

Sin[𝜋 − 𝑥] = Sin[𝑥] 

 
Sin[𝑥 + 𝑦] = Sin[𝑥]Cos[𝑦] + Cos[𝑥]Sin[𝑦] 

Cos[𝑥 + 𝑦] = Cos[𝑥]Cos[𝑦] − Sin[𝑥]Sin[𝑦] 

Sin[2𝑥] = 2Sin[𝑥]Cos[𝑥] 

Cos[2𝑥] = Cos[𝑥]2 − Sin[𝑥]2 

= 2Cos[𝑥]2 − 1 = 1 − 2Sin[𝑥]2 

 

 

 

Sin[𝑥] = 𝑥 −
𝑥3

3!
+
𝑥5

5!
−⋯ =∑(−1)𝑗

𝑥2𝑗+1

(2𝑗 + 1)!

∞

𝑗=0

=
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2
 

Cos[𝑥] = 1 −
𝑥2

2!
+
𝑥4

4!
− ⋯ =∑(−1)𝑗

𝑥2𝑗

(2𝑗)!

∞

𝑗=0

=
𝑒𝑖𝑥 + 𝑒−𝑖𝑥

2
  

𝐴 = 𝐴𝑥�̂� + 𝐴𝑦�̂� + 𝐴𝑧�̂� 

𝐵ሬ⃗ = 𝐵𝑥𝑥 + 𝐵𝑦�̂� + 𝐵𝑧�̂� 

 

Proof 

 

𝐶 ⋅ 𝐶 = ൫𝐴 − 𝐵ሬ⃗ ൯ ⋅ ൫𝐴 − 𝐵ሬ⃗ ൯ 

= ห𝐴ห
2
+ ห𝐵ሬ⃗ ห

2
− 2 𝐴 ⋅ 𝐵ሬ⃗  

 Triangle defined by vectors 𝐴 and 𝐵ሬ⃗  

 Thirds leg given by 𝐶 = 𝐴 − 𝐵ሬ⃗  

  ห𝑪ሬሬ⃗ ห
𝟐
= ห𝑨ሬሬ⃗ ห

𝟐
+ ห𝑩ሬሬ⃗ ห

𝟐
− 𝟐ห𝑨ሬሬ⃗ หห𝑩ሬሬ⃗ ห𝐂𝐨𝐬[𝜽] 



 

 

 

 

 

  

Sphere of radius 𝑅 centered at the origin 

∮ 𝑑𝑎

surface

= ∫ ∫ 𝑅2Sin[𝜃] 𝑑𝜃 𝑑𝜙
𝜋

0

2𝜋

0

 

∮ 𝑓[𝑟]𝑑𝑎

surface

= ∫ ∫ 𝑓[𝑟]𝑅2Sin[𝜃] 𝑑𝜃 𝑑𝜙
𝜋

0

2𝜋

0

 

∮ �⃗�[𝑟] ∙ 𝑑�⃗�

surface

= ∫ ∫ ൫�⃗�[𝑟] ∙ �̂�൯𝑅2Sin[𝜃] 𝑑𝜃 𝑑𝜙
𝜋

0

2𝜋

0

 

∮ 𝑑𝑎

surface

      

∮ 𝑓[𝑟]𝑑𝑎

surface

    

∮ �⃗�[𝑟] ∙ 𝑑�⃗�

surface

= ∮ ൫�⃗�[𝑟] ∙ 𝑑�̂�൯𝑑𝑎

surface

 

 

Integrate over 

infinitesimal 

area elements 

Surface Integrals 

 

 

 

𝑑�̂� is the normal direction 

(perpendicular to a surface) 

 

𝑑�̂� 

Gauss’s Law 

 

Example: Infinite Sheet of Charge 

 

𝐸ሬ⃗ = Electric field 

𝜖0 =
1

4𝜋𝑘
 

𝑑�⃗� = Normal vector of infinitesimal area 

𝑄in = Charge enclosed in surface 

 

 

 
Choose Gaussian surface 

that utilizes symmetry 

 

Electric field from point charge 𝑞 at the origin 

Radial symmetry   
                 
⇒       𝐸ሬ⃗ [𝑟] = 𝐸[𝑟]�̂�  

(𝐸ሬ⃗  points radially and only depends on distance 𝑟 from origin) 

Gaussian sphere    
                 
⇒       𝑑�⃗� = �̂� 𝑑𝑎 

∮𝐸ሬ⃗ [𝑟] ∙ 𝑑�⃗� = ∮𝐸[𝑟]𝑑𝑎 = 𝐸[𝑟]∮𝑑𝑎 = 𝐸[𝑟](4𝜋𝑟2) =
𝑞

𝜖0
 

 

 

𝑑�̂� 

𝐸ሬ⃗  

∮ 𝐸ሬ⃗ [𝑟] ∙ 𝑑�⃗�

surface

=
𝑄in
𝜖0

 

(
on every surface 𝐸ሬ⃗ ∙ 𝑑�⃗� = 0

or 𝐸ሬ⃗ ∙ 𝑑�⃗� = 𝐸 𝑑𝑎
) 

 

𝐸ሬ⃗ [𝑟] =
𝑞

4𝜋𝜖0𝑟
2
�̂� 

 

𝑑�̂� 

𝐸ሬ⃗  

Infinite plane at 𝑥 = 0 with uniform charge density 𝜎 

Translational symmetry   
                 
⇒       𝐸ሬ⃗ [𝑟] = 𝐸[𝑥]𝑥  

(𝐸ሬ⃗  points away from plane and only depends on distance 𝑥 from plane) 

Gaussian cube with side length 2𝑠 centered on the plane 

 𝐸[𝑥]𝑥 ∙ 𝑑�⃗� = 0 for all sides that intersect the plane 

 𝐸[𝑥]𝑥 ∙ 𝑑�⃗� = 𝐸[𝑥]𝑑𝑎 for both surfaces parallel to plane 

∮𝐸ሬ⃗ [𝑟] ∙ 𝑑�⃗� = 2𝐸[𝑥](4𝑠2) =
𝜎(4𝑠2)

𝜖0
 

 

 
𝐸ሬ⃗ [𝑟] = ൞

𝜎

2𝜖0
𝑥   𝑥 > 0

−
𝜎

2𝜖0
𝑥 𝑥 < 0   

 

Exactly on the plane, electric field 

must be zero by symmetry! 

Discontinuity in 𝐸ሬ⃗  across a sheet 

of charge is always 
𝜎

𝜖0
 

Value of 𝐸ሬ⃗  on the sheet is the 

average of its values on both sides 

 



 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 Uniform charge density 𝜎 =
𝑄

𝐴
 spread over both 

inner surfaces  

 

 

 

 

𝐸ሬ⃗  

 𝜙 

 𝜌 

𝐸ሬ⃗ = −∇ሬሬ⃗ 𝜙 

𝜙 = −∫𝐸ሬ⃗ ⋅ 𝑑𝑠 

Work required to assemble charge distribution:  

𝑈 =
1

2
∑∑

𝑘  𝑞𝑖𝑞𝑗

𝑟𝑗𝑘
𝑗≠𝑖

𝑁

𝑖=1

 

𝑈 =
𝜖0 

2
∫𝐸2𝑑𝑣 =

1

2
∫𝜌 𝜙 𝑑𝑣  

(Point charges) 

(Charge distribution) 

Fundamental quantities: 

𝜌       – 

𝐸ሬ⃗     – 

𝜙            – 

Charge distribution 

Force per unit charge on a test particle 

Potential energy per unit charge 

to place a test particle  

 

Example: Parallel Plates  

(Ignoring Edge Effects) 

 

 

Key properties 

 𝐸ሬ⃗ = 0ሬ⃗  inside a conductor 

 𝜌 = 0 inside a conductor 

 Any net charge resides on the surface 

 A conductor surface is equipotential 

 𝐸ሬ⃗  perpendicular to surface just outside a conductor 

 

Conductors 

 

 

(Capacitance) 𝐶 ≡
𝑄

𝜙1 − 𝜙2
=
𝜖0𝐴

𝑠
 

 𝑈 ≡
𝑄2

2𝐶
=
𝜖0𝐸

2

2
𝐴 𝑠 (

Energy Stored
in Capacitor

) 

 𝐸ሬ⃗ =
𝜎

𝜖0
(−�̂�) between plates, 𝐸ሬ⃗ = 0ሬ⃗  outside plates 

 

Electrostatics 


