Time Dilation

- Light moves at speed c in all frames
- Two events that occur simultaneously in one reference frame may not be simultaneous in another frame
- Two events that occur at the same location in frame A, separated by a time t_{A}, will take a greater time $t_{B}=\gamma t_{A}$ in frame B moving at velocity v with respect to frame A
- $\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}($ with $\gamma \geq 1)$

Head Start Effect

- Two clocks are positioned at the end of a train of length L (as measured in its own frame. The clocks are synchronized in the train's reference frame
- The train travels past an observer at speed v. The observer will see the rear clock showing a higher reading than the front clock by $\Delta t=\frac{L v}{c^{2}}$
- The rear clock does not tick faster than the front clock, it simply remains a fixed time ahead of the front clock

웃

Length Contraction

- An object in frame A moves with velocity v relative to frame B. The object has length l^{\prime} along this direction of motion in A 's frame. The object has a shorter length $l=\frac{l^{\prime}}{\gamma}$ in B 's frame
- Length contraction does not apply in the directions transverse to the direction of motion (set by v) between two reference frames

Example

A muon moves from a height h straight down towards the Earth with a large velocity v. It decays after time T in its own frame. Can the muon reach the ground?

- In the Earth's frame, time dilation applies. The muon has to travel a distance h in time γT
- In the muon's frame, length contraction kicks in. The muon must travel a distance $\frac{h}{\gamma}$ in time T

Lorentz Transformation

- Frame S^{\prime} moves at velocity v relative to frame S
- The length and time between two events (an event is anything that has space and time coordinates) in S^{\prime} are related to those in S by

$$
\begin{array}{ll}
\Delta x=\gamma\left(\Delta x^{\prime}+v \Delta t^{\prime}\right) & \Delta x^{\prime}=\gamma(\Delta x-v \Delta t) \\
\Delta t=\gamma\left(\Delta t^{\prime}+\frac{v}{c^{2}} \Delta x^{\prime}\right) & \Delta t^{\prime}=\gamma\left(\Delta t-\frac{v}{c^{2}} \Delta x\right)
\end{array}
$$

- Since there is no transverse length contraction, $\Delta y=\Delta y^{\prime}$ and $\Delta z=\Delta z^{\prime}$
- $\Delta x^{2}-c^{2} \Delta t^{2}$ has the same value in all reference frames

Velocity Addition

- An object moves at speed v_{1} with respect to frame S^{\prime}. Frame S^{\prime} moves at speed v_{2} with respect to frame S in the same direction of motion as

S the object. The speed u of the object in frame S is

$$
u=\frac{v_{1}+v_{2}}{1+\frac{v_{1} v_{2}}{c^{2}}}
$$

- An object moving at speed c in one reference frame moves at speed c in all reference frames
- An object moving slower than c in one reference frame moves slower than c in all reference frames

Momentum and Energy

- The relativistic energy and momentum of a particle moving with velocity \vec{v} are given by

$$
\begin{array}{lc}
\vec{p}=\gamma m \vec{v} & \text { Slow speeds } \\
E=\gamma m c^{2} & (v \ll c)
\end{array}\left\{\begin{array}{l}
\vec{p} \approx m \vec{v} \\
E \approx m c^{2}+\frac{1}{2} m v^{2}
\end{array}\right.
$$

- A particle moves at speed u^{\prime} in frame S^{\prime}, which moves at speed v relative to frame S. Momentum ($\gamma_{u^{\prime}} m u^{\prime}$) and energy $\left(\gamma_{u^{\prime}} m c^{2}\right)$ in S^{\prime} is related to that in S by the same Lorentz transformation as space and time (with $\gamma \equiv \gamma_{v}$)

$$
\begin{array}{ll}
E=\gamma\left(E^{\prime}+v p^{\prime}\right) & E^{\prime}=\gamma(E-v p) \\
p=\gamma\left(p^{\prime}+\frac{v}{c^{2}} E^{\prime}\right) & p^{\prime}=\gamma\left(p-\frac{v}{c^{2}} E\right)
\end{array}
$$

- Energy and momentum are conserved in collisions within the same reference frame
- The invariant mass formula $E^{2}-p^{2} c^{2}=m^{2} c^{4}$ applies any mass in any reference frame

Cartesian Coordinates

An oldie but a goodie, yet not always the best choice!
Area of a circle in Cartesian coordinates

$$
\int_{-R}^{R} \int_{-\sqrt{R^{2}-y^{2}}}^{\sqrt{R^{2}-y^{2}}} d x d y \stackrel{\text { pain }}{\Longrightarrow} \pi R^{2}
$$

Area of a circle in Polar coordinates

$$
\int_{0}^{2 \pi} \int_{0}^{R} r d r d \theta \stackrel{\text { easy }}{\Longrightarrow} \pi R^{2}
$$

Area Element

$$
d V=d x d y
$$

Polar Coordinates

Polar
to
Cartesian $\left[\begin{array}{c}x=r \operatorname{Cos}[\theta] \\ y=r \operatorname{Sin}[\theta]\end{array}\right]\left[\begin{array}{l}r=\sqrt{x^{2}+y^{2}} \\ \theta=\operatorname{ArcTan}\left[\frac{y}{x}\right]\end{array}\right] \begin{gathered}\text { Cartesian } \\ \text { to } \\ \text { Polar }\end{gathered}$

Unit Vectors

$$
\left[\begin{array}{l}
\hat{x}=\operatorname{Cos}[\theta] \hat{\rho}-\operatorname{Sin}[\theta] \hat{\theta} \\
\hat{y}=\operatorname{Sin}[\theta] \hat{\rho}+\operatorname{Cos}[\theta] \hat{\theta}
\end{array}\right]\left[\begin{array}{l}
\hat{r}=\operatorname{Cos}[\theta] \hat{x}+\operatorname{Sin}[\theta] \hat{y} \\
\hat{\theta}=-\operatorname{Sin}[\theta] \hat{x}+\operatorname{Cos}[\theta] \hat{y}
\end{array}\right]
$$

Area Element
$d V=r d r d \theta$

Cylindrical Coordinates

$$
\left[\begin{array}{l}
x=\rho \operatorname{Cos}[\theta] \\
y=\rho \operatorname{Sin}[\theta] \\
z=z
\end{array}\right] \quad\left[\begin{array}{l}
\rho=\sqrt{x^{2}+y^{2}} \\
\theta=\operatorname{ArcTan}\left[\frac{y}{x}\right] \\
z=z
\end{array}\right]
$$

Volume Element

$$
d V=r^{2} \operatorname{Sin}[\theta] d r d \theta d \phi
$$

Spherical Coordinates

$\left[\begin{array}{l}x=r \operatorname{Sin}[\theta] \operatorname{Cos}[\phi] \\ y=r \operatorname{Sin}[\theta] \operatorname{Sin}[\phi] \\ z=r \operatorname{Cos}[\theta]\end{array}\right]\left[\begin{array}{l}r=\sqrt{x^{2}+y^{2}+z^{2}} \\ \theta=\operatorname{ArcTan}\left[\frac{\left(x^{2}+y^{2}\right)^{1 / 2}}{z}\right] \\ \phi=\operatorname{ArcTan}\left[\frac{y}{x}\right]\end{array}\right]$
Volume Element
$d V=r^{2} \operatorname{Sin}[\theta] d r d \theta d \phi$

Dot Product

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

$$
=|\vec{A}||\vec{B}| \operatorname{Cos}[\theta]
$$

- $\vec{A} \cdot \vec{B}$ is a scalar
- $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A} \longrightarrow \vec{A} \cdot \vec{A}=|\vec{A}|^{2}$
- For any unit vector $\hat{n}, \vec{A} \cdot \hat{n}$ represents the length of \vec{A} along the direction \hat{n}

Cross Product

$$
\begin{aligned}
\vec{A} \times \vec{B}= & \left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{x} \\
& +A_{z} B_{x}-A_{x} B_{z} y \\
& +A_{x} B_{y}-A_{y} B_{x} z
\end{aligned}
$$

- $\vec{A} \times \vec{B}$ is a vector
- $\vec{A} \times \vec{B}=-\vec{B} \times \vec{A} \longrightarrow \vec{A} \times \vec{A}=\overrightarrow{0}$
- Direction given by right-hand rule and magnitude $|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \operatorname{Sin}[\theta]$ equal to parallelogram area

Law of Cosines

- Triangle defined by vectors \vec{A} and \vec{B}
- Thirds leg given by $\vec{C}=\vec{A}-\vec{B}$
$|\vec{C}|^{2}=|\vec{A}|^{2}+|\vec{B}|^{2}-2|\vec{A}||\vec{B}| \operatorname{Cos}[\theta]$

Trig Functions

$\operatorname{Sin}[x]=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=\sum_{j=0}^{\infty}(-1)^{j} \frac{x^{2 j+1}}{(2 j+1)!}=\frac{e^{i x}-e^{-i x}}{2}$
$\operatorname{Cos}[x]=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{j=0}^{\infty}(-1)^{j} \frac{x^{2 j}}{(2 j)!}=\frac{e^{i x}+e^{-i x}}{2}$

$$
\begin{array}{rlrl}
\operatorname{Cos}[0] & =1 & \operatorname{Sin}[0] & =0 \\
\operatorname{Cos}\left[\frac{\pi}{6}\right] & =\frac{\sqrt{3}}{2} & \operatorname{Sin}\left[\frac{\pi}{6}\right]=\frac{1}{2} \\
\operatorname{Cos}\left[\frac{\pi}{4}\right] & =\frac{\sqrt{2}}{2} & & \operatorname{Sin}\left[\frac{\pi}{4}\right]=\frac{\sqrt{2}}{2} \\
\operatorname{Cos}\left[\frac{\pi}{3}\right] & =\frac{1}{2} & \operatorname{Sin}\left[\frac{\pi}{3}\right]=\frac{\sqrt{3}}{2} \\
\operatorname{Cos}\left[\frac{\pi}{2}\right] & =0 & \operatorname{Sin}\left[\frac{\pi}{2}\right] & =1 \\
\operatorname{Cos}[\pi-x] & =-\operatorname{Cos}[x] & \operatorname{Sin}[\pi-x] & =\operatorname{Sin}[x]
\end{array}
$$

$$
\operatorname{Sin}[x+y]=\operatorname{Sin}[x] \operatorname{Cos}[y]+\operatorname{Cos}[x] \operatorname{Sin}[y]
$$

$$
\operatorname{Cos}[x+y]=\operatorname{Cos}[x] \operatorname{Cos}[y]-\operatorname{Sin}[x] \operatorname{Sin}[y]
$$

$$
\begin{aligned}
\operatorname{Sin}[2 x] & =2 \operatorname{Sin}[x] \operatorname{Cos}[x] \\
\operatorname{Cos}[2 x] & =\operatorname{Cos}[x]^{2}-\operatorname{Sin}[x]^{2}
\end{aligned}
$$

$$
=2 \operatorname{Cos}[x]^{2}-1=1-2 \operatorname{Sin}[x]^{2}
$$

Surface Integrals

surface
$d \hat{a}$ is the normal direction (perpendicular to a surface)

Gauss's Law

$\vec{E}=$ Electric field
$\epsilon_{0}=\frac{1}{4 \pi k}$

$$
\oint_{\text {surface }} \vec{E}[\vec{r}] \cdot d \vec{a}=\frac{Q_{\text {in }}}{\epsilon_{0}}
$$

$d \vec{a}=$ Normal vector of infinitesimal area
$Q_{\text {in }}=$ Charge enclosed in surface

Choose Gaussian surface that utilizes symmetry
$\binom{$ on every surface $\vec{E} \cdot d \vec{a}=0}{$ or $\vec{E} \cdot d \vec{a}=E d a}$

Electric field from point charge q at the origin
Radial symmetry $\Longrightarrow \vec{E}[\vec{r}]=E[r] \hat{r}$
(\vec{E} points radially and only depends on distance r from origin)
Gaussian sphere $\Longrightarrow d \vec{a}=\hat{r} d a$
$\oint \vec{E}[\vec{r}] \cdot d \vec{a}=\oint E[r] d a=E[r] \oint d a=E[r]\left(4 \pi r^{2}\right)=\frac{q}{\epsilon_{0}}$

$$
\vec{E}[\vec{r}]=\frac{q}{4 \pi \epsilon_{0} r^{2}} \hat{r}
$$

$\oint_{\text {surface }} d a=\int_{0}^{2 \pi} \int_{0}^{\pi} R^{2} \operatorname{Sin}[\theta] d \theta d \phi$
$\oint_{\text {surface }} f[\vec{r}] d a=\int_{0}^{2 \pi} \int_{0}^{\pi} f[\vec{r}] R^{2} \operatorname{Sin}[\theta] d \theta d \phi$
$\oint_{\text {surface }} \vec{F}[\vec{r}] \cdot d \vec{a}=\int_{0}^{2 \pi} \int_{0}^{\pi}(\vec{F}[\vec{r}] \cdot \hat{r}) R^{2} \operatorname{Sin}[\theta] d \theta d \phi$

Example: Infinite Sheet of Charge

Infinite plane at $x=0$ with uniform charge density σ
Translational symmetry $\Longrightarrow \vec{E}[\vec{r}]=E[x] \hat{x}$
(\vec{E} points away from plane and only depends on distance x from plane)
Gaussian cube with side length $2 s$ centered on the plane

- $E[x] \hat{x} \cdot d \vec{a}=0$ for all sides that intersect the plane
- $E[x] \hat{x} \cdot d \vec{a}=E[x] d a$ for both surfaces parallel to plane

$$
\oint \vec{E}[\vec{r}] \cdot d \vec{a}=2 E[x]\left(4 s^{2}\right)=\frac{\sigma\left(4 s^{2}\right)}{\epsilon_{0}}
$$

$$
\vec{E}[\vec{r}]= \begin{cases}\frac{\sigma}{2 \epsilon_{0}} \hat{x} & x>0 \\ -\frac{\sigma}{2 \epsilon_{0}} \hat{x} & x<0\end{cases}
$$

Exactly on the plane, electric field must be zero by symmetry!
Discontinuity in \vec{E} across a sheet of charge is always $\frac{\sigma}{\epsilon_{0}}$
Value of \vec{E} on the sheet is the average of its values on both sides

Electrostatics

Fundamental quantities:
$\left[\begin{array}{l}\rho-\text { Charge distribution } \\ \vec{E}-\text { Force per unit charge on a test particle } \\ \phi- \\ \quad \text { Potential energy per unit charge } \\ \text { to place a test particle }\end{array}\right.$

Work required to assemble charge distribution:

$$
\left[\begin{array}{ll}
U=\frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i} \frac{k q_{i} q_{j}}{r_{j k}} & \text { (Point charges) } \\
U=\frac{\epsilon_{0}}{2} \int E^{2} d v=\frac{1}{2} \int \rho \phi d v & \text { (Charge distribution) }
\end{array}\right.
$$

Potential energy per unit charge
to place a test particle

Conductors

Key properties

- $\vec{E}=\overrightarrow{0}$ inside a conductor
- $\rho=0$ inside a conductor
- Any net charge resides on the surface
- A conductor surface is equipotential
- \vec{E} perpendicular to surface just outside a conductor
- Uniform charge density $\sigma=\frac{Q}{A}$ spread over both inner surfaces
- $\vec{E}=\frac{\sigma}{\epsilon_{0}}(-\hat{z})$ between plates, $\vec{E}=\overrightarrow{0}$ outside plates

$$
\begin{array}{ll}
C & \equiv \frac{Q}{\phi_{1}-\phi_{2}}=\frac{\epsilon_{0} A}{s} \\
U \equiv \frac{(\text { Capacitance })}{2 C}=\frac{\epsilon_{0} E^{2}}{2} A s & \binom{\text { Energy Stored }}{\text { in Capacitor }}
\end{array}
$$

